FOUNDORY-DRIVEN INNOVATION IN THE MOBILITY ERA

AJIT MANOCHA, CEO, GLOBALFOUNDRIES
First, a quick poll...

What is the biggest challenge facing our industry today?

A. Technology (141672)
B. Talent (141689)
C. Economic (141752)

Text your response to 22333 now
Agenda

- The Impact of Mobile Era
- Technology Challenges
- Economic Realities
- Evolving the Business Model
- Foundry 2.0℠ at Work
Agenda

The Impact of Mobile Era
Technology Challenges
Economic Realities
Evolving the Business Model
Foundry 2.0℠ at Work
The Mobile Impact on Silicon Consumption

IC Market for PCs vs. Cellphones

PC and Cellphone IC Markets ($B)

$120

$118.9B
$102.0B

$77.6B

$70

$64.7B

$62.2B

$35.9B

$0

08 09 10 11 12 13F 14F 15F 16F

STANDARD PC ICs

TABLET & OTHER PC ICs

Cellphone ICs

Source: IC Insights
Mobile Drives New Requirements: Power, Performance and Features

- Higher data rates
- High resolution screens
- Multicore processors
- Thinner form factors

The Convergence is Here

- Communication
- Computing
- Consumer
- Navigation
- Imaging
- Video

Performance*

Power

Area

A4
A5
A5X
Mobile Device System-Level Integration Requirements Driving Advanced Technology

<table>
<thead>
<tr>
<th>Devices</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Processor</td>
<td>45NM</td>
<td>45NM</td>
<td>28nm</td>
<td>28nm</td>
<td><=20nm</td>
</tr>
<tr>
<td>(Dual Core)</td>
<td>(Dual</td>
<td>(Quad</td>
<td>(Quad</td>
<td>(Quad</td>
<td>(Quad</td>
</tr>
<tr>
<td>Baseband Processor</td>
<td>65nm</td>
<td>40NM</td>
<td>28nm</td>
<td>28nm</td>
<td><=20nm</td>
</tr>
<tr>
<td>WiFi</td>
<td></td>
<td>(Dual</td>
<td>(Quad</td>
<td>(Quad</td>
<td></td>
</tr>
<tr>
<td>BT/FM</td>
<td>40nm</td>
<td>19nm</td>
<td>15nm</td>
<td>13nm</td>
<td>10nm</td>
</tr>
<tr>
<td>GPS</td>
<td><=20nm</td>
<td>19nm</td>
<td>15nm</td>
<td>13nm</td>
<td>10nm</td>
</tr>
<tr>
<td>NFC Controller</td>
<td></td>
<td>19nm</td>
<td>15nm</td>
<td>13nm</td>
<td></td>
</tr>
<tr>
<td>RF / Transceiver</td>
<td>40nm</td>
<td>28nm</td>
<td>28nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td><=20nm</td>
<td>19nm</td>
<td>15nm</td>
<td>13nm</td>
<td>10nm</td>
</tr>
<tr>
<td>NAND Flash</td>
<td></td>
<td>19nm</td>
<td>15nm</td>
<td>13nm</td>
<td></td>
</tr>
<tr>
<td>Audio / Video Codec</td>
<td>180nm</td>
<td>130nm</td>
<td>130nm</td>
<td>90nm</td>
<td>65nm</td>
</tr>
<tr>
<td>Power Management IC</td>
<td></td>
<td>180nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Cancellation IC</td>
<td>130nm</td>
<td>90nm</td>
<td>90nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touchscreen Controller</td>
<td></td>
<td>90nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesture Recognition</td>
<td></td>
<td>90nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e-Compass / e-Gyroscope</td>
<td>250nm</td>
<td>180nm</td>
<td>180nm</td>
<td>180nm</td>
<td>180nm</td>
</tr>
<tr>
<td>Total Devices</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

SOURCE: Gartner
Cost of Ownership Driving New Dynamics
(For high-volume manufacturers...>50K wpm)

SOURCE: Handel Jones, IBS Consulting
Agenda

The Impact of Mobile Era
Technology Challenges
Economic Realities
Evolving the Business Model
Foundry 2.0℠ at Work
The “Big Five” Challenges

Device Architectures/Materials
- FDSOI
- FinFETs
- NanoWires
- III-V

Litho/EUV
- Cost
- Multi-pattern immersion
- EUV Source power
- Tool availability

Packaging
- ‘Normal economics’ are dead
- Value proposition shifting toward PPC
- Alternative scaling opportunities (2.5/3D)

450mm
- Pilot lines and HVM timing driven by 193i and EUV lithography
- G450C

COST – Time to Everything, Moore’s Law, SCM Security, Talent, IP Security
Range of Application Optimized Technology Solutions

Speed @ ISO Power*

- **28HPP**: +17%
- **28LPP**: +27%
- **28SLP/HPP**: +53%
- **28LPS**: +58%
- **20LPM**: +20%

Power @ ISO Speed*

- **28LPS**: -60%
- **28SLP**: -56%
- **28LPH**: -40%
- **28HPP**: -32%
- **20LPM**: -38%

Area Reduction

- **28LPS/LPH**: -50%
- **28SLP/HPP** (smaller 28nm area with more competitive gate first DR): -45%
- **20LPM**: -38%

Based on RO1 benchmark circuit simulation results
14XM FinFET – Total Solution

- Full Suite PDK
- Power and Performance Optimized CPU Solutions
- Mobile SoC Platform
- Multicore GPU Solutions
- High Performance Platform
- 2.5D and 3D Packaging

“Other companies will follow GLOBALFOUNDRIES’ lead. I expect everyone to do it.”

Dr. Chemning Hu, Wall Street Journal interview
The “Big Five” Challenges

Device Architectures/Materials
- FDSOI
- FinFETs
- NanoWires
- III-V

Litho/EUV
- Cost
- Multi-pattern immersion
- EUV Source power
- Tool availability

Packaging
- ‘Normal economics’ are dead
- Value proposition shifting toward PPC
- Alternative scaling opportunities (2.5/3D)

450mm
- Pilot lines and HVM timing driven by 193i and EUV lithography
- G450C

Cost – Time to Everything, Moore’s Law, SCM Security, Talent, IP Security
At advanced nodes, Litho starts to dominate the wafer cost.

Source: IMEC, GLOBALFOUNDRIES
Is EUV Ready for 10nm?
The “Big Five” Challenges

Device Architectures/Materials
- FDSOI
- FinFETs
- NanoWires
- III-V

Litho/EUV
- Cost
- Multi-pattern immersion
- EUV Source power
- Tool availability

Packaging
- ‘Normal economics’ are dead
- Value proposition shifting toward PPC
- Alternative scaling opportunities (2.5/3D)

450mm
- Pilot lines and HVM timing driven by 193i and EUV lithography
- G450C

COST – Time to Everything, Moore’s Law, SCM Security, Talent, IP Security
Packaging Will Evolve to New Dimensions

Silicon Partitioning with Interposers
Market: FPGA
2011

Memory Cube
Market: Server and Computing
2013

Logic + Memory on Interposer
Market: GPU, CPU, Network Processors
2013-14

Wide I/O Memory on Apps Processor
Market: Mobile, Tablet
2014

Heterogeneous Stacking
Market: Mobile, CPU
2017?
Agenda

The Impact of Mobile Era
Technology Challenges
Economic Realities
Evolving the Business Model
Foundry 2.0℠ at Work
Advanced Technologies
Driving Complexity / Cost

Mask Layer Growth
Per Technology Node

180nm
130nm
65nm
28nm
20/14nm

Technology Node
Technology Complexity Makes Equipment a Greater Proportion of Overall Fab Costs

Breakdown of Equipment Costs

- Lithography: 30%
- Etch: 20%
- PVD: 15%
- CVD: 10%
- Metrology: 10%
- Implant: 5%
- CMP: 5%
- Diffusion: 5%

Historical Breakdown of Fab Costs

- 90nm: Facilities 70%, Equipment 30%
- 65nm: Facilities 70%, Equipment 30%
- 45nm: Facilities 75%, Equipment 25%
- 32nm: Facilities 80%, Equipment 20%
- 20nm: Facilities 85%, Equipment 15%

Source: VLSI
Advanced Technology Costs are Rapidly Escalating…

- **Fab Cost**
 - 130nm: 1,450
 - 90nm: 2,000
 - 65nm: 2,500
 - 40nm: 4,000
 - 28nm: 4,850
 - 20/14nm: 6,700

- **Process Development Cost**
 - 130nm: 250
 - 90nm: 310
 - 65nm: 400
 - 40nm: 600
 - 28nm: 900
 - 20/14nm: 1,300

- **Chip Design Cost**
 - 130nm: 15
 - 90nm: 24
 - 65nm: 34
 - 40nm: 60
 - 28nm: 100
 - 20/14nm: 150
Cost of Building a New Leading Edge Fab is Rapidly Escalating

Rising capital costs are increasing investment risk

SOURCE: World Fab Watch/GLOBALFOUNDRIES
Agenda

The Impact of Mobile Era
Technology Challenges
Economic Realities
Evolving the Business Model
Foundry 2.0℠ at Work
Evolution of Foundry Model

1990
Foundry 1.0
Customer-funded contract manufacturing
No transparency needed
Fab cost-savings focus

2000
Foundry 1.0
Wafer price competition
Less transparency
Technology challenges
Transaction focus
Zero-sum orientation

Today
Foundry 2.0℠
Virtual IDM
Partnering for success
Product/Market collaboration
Time to Everything

Source: VLSI Technology Research
Why the Traditional Model No Longer Works

IDM and Foundry 1.0 Model Will No Longer Work

- Slower rate of change
- Solutions optimized to one product
- Systems and methods become inflexible
- Best solutions rarely originate from insulated team

- Not tapping global R&D talent
- Lack of flexibility and transparency
- Single source supply adding geographical risks
- Lack of collaborative innovation
It Takes an Ecosystem

- System Company
- O/S Provider
- Embedded Software
- Fab-Lite Company
- Fabless IC Company
- Foundry
- EDA tools
- SoC Subsystem
- Assembly and Test
- IP cores
Engaging early, deeply, openly, and comprehensively

Collaborative Innovation

Tapping global talent

Jointly develop new technologies and manufacturing solutions

Focused on shared success

Time to Everything!
Agenda

The Impact of Mobile Era
Technology Challenges
Economic Realities
Evolving the Business Model
Foundry 2.0℠ at Work
GLOBALFOUNDRIES and ARM enable early POP IP in 28SLP for Cortex-A12
Artisan® Core-optimized Physical IP
ARM Implementation Knowledge
ARM Certified Benchmarking

ARM’s Cortex-A12 architecture, POP IP combined with GLOBALFOUNDRIES 28SLP process projected to yield significant improvement over Cortex-A9 in 40LP:

1.7X higher performance
1.5X – 2X better power efficiency
Similar area and leakage.
Foundry 2.0@Work: Enabling a New Approach to Collaborative Development

Technology Development Center

$2B investment in collaborative space to help close the gap between lab and fab

Located on Fab 8 campus in Saratoga County, NY

Strengthens R&D ecosystem from mask to silicon to packaging
Foundry 2.0@Work: Pushing the Leading-Edge… And Accelerating the Process Roadmap

- **2003**: Single CESL
- **2005**: 130nm, 90nm
- **2007**: 65nm
- **2009**: 45/40nm
- **2011**: 32SOI
- **2013**: 28nm
- **2015**: 20nm
- **2017**: 7nm

Production
- DSL Stressors In Production
- <100> Wafer Orientation For Low Cost Enhancement
- HKMG For Leakage Reduction

Development
- Esige For PFET Enhancement
- Fully depleted device
- In collaboration with ST

Path-Finding
- TPEN
- Ge
- InP
Foundry 2.0@Work: 10nm Development Model
The Future Today…Enabled by Collaboration

Lab to Fab
- CNSE
- JDA
- IMEC
- SRC
-IME

Ecosystem Collaboration
- Embedded
- Memory
- 3D-IC
- EDA

Shared Tooling, Common Evaluations
- Litho / EUV
- Etch
- Metrology

Process Integration / Characterization
- PDF
- Intermolecular
Rockchip’s RK3188 and RK3168 next generation mobile processors

China’s 1st 28nm HKMG Multicore tablet SoCs in production

Delivers high performance AND low power

ARM Cortex-9 based

Manufactured exclusively by GLOBALFOUNDRIES

Early close collaboration between design and process technology teams

1.8 GHz performance and ultra-low leakage

28SLP HKMG process

"This partnership is a true demonstration of GLOBALFOUNDRIES’ unique approach to Collaborative Device Manufacturing. Rockchip is fortunate to have a partner like GLOBALFOUNDRIES."

Chen Feng, Rockchip Executive
Addressing Technology, Talent and Economic Challenges...Were you correct?

Supply Chain Challenges

Operational Excellence

Supply Continuity / Global Footprint

FOUNDRY 2.0
Fully Optimized for Mobile Era
Time to Everything!

Open Fab Concept / Collaboration

IP Security

Technology and Innovation Leadership
Join the Elite on Today’s Playing Field

Device Architecture / Materials

450mm

Litho / EUV

Advanced Packaging

FOUNDRY 2.0

Time to Everything!

Challenge your teams to play in the big leagues of Foundry 2.0